Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542224

RESUMO

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Assuntos
Miócitos Cardíacos , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Polirribossomos/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203852

RESUMO

Circular RNAs (circRNAs) are a recently characterized family of gene transcripts forming a covalently closed loop of single-stranded RNA. The extent of their potential for fine-tuning gene expression is still being discovered. Several studies have implicated certain circular RNAs in pathophysiological processes within vascular endothelial cells and cancer cells independently. However, to date, no comparative study of circular RNA expression in different types of endothelial cells has been performed and analysed through the lens of their central role in vascular physiology and pathology. In this work, we analysed publicly available and original RNA sequencing datasets from arterial, veinous, and lymphatic endothelial cells to identify common and distinct circRNA expression profiles. We identified 4713 distinct circRNAs in the compared endothelial cell types, 95% of which originated from exons. Interestingly, the results show that the expression profile of circular RNAs is much more specific to each cell type than linear RNAs, and therefore appears to be more suitable for distinguishing between them. As a result, we have discovered a specific circRNA signature for each given endothelial cell type. Furthermore, we identified a specific endothelial cell circRNA signature that is composed four circRNAs: circCARD6, circPLXNA2, circCASC15 and circEPHB4. These circular RNAs are produced by genes that are related to endothelial cell migration pathways and cancer progression. More detailed studies of their functions could lead to a better understanding of the mechanisms involved in physiological and pathological (lymph)angiogenesis and might open new ways to tackle tumour spread through the vascular system.


Assuntos
Células Endoteliais , RNA Circular , RNA Circular/genética , Motivos de Nucleotídeos , RNA/genética , Movimento Celular
3.
EMBO Mol Med ; 16(2): 386-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177539

RESUMO

Secondary lymphedema (LD) corresponds to a severe lymphatic dysfunction leading to the accumulation of fluid and fibrotic adipose tissue in a limb. Here, we identified apelin (APLN) as a powerful molecule for regenerating lymphatic function in LD. We identified the loss of APLN expression in the lymphedematous arm compared to the normal arm in patients. The role of APLN in LD was confirmed in APLN knockout mice, in which LD is increased and associated with fibrosis and dermal backflow. This was reversed by intradermal injection of APLN-lentivectors. Mechanistically, APLN stimulates lymphatic endothelial cell gene expression and induces the binding of E2F8 transcription factor to the promoter of CCBE1 that controls VEGF-C processing. In addition, APLN induces Akt and eNOS pathways to stimulate lymphatic collector pumping. Our results show that APLN represents a novel partner for VEGF-C to restore lymphatic function in both initial and collecting vessels. As LD appears after cancer treatment, we validated the APLN-VEGF-C combination using a novel class of nonintegrative RNA delivery LentiFlash® vector that will be evaluated for phase I/IIa clinical trial.


Assuntos
Linfedema , Fator C de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Apelina/genética , Fator C de Crescimento do Endotélio Vascular/genética , RNA Mensageiro , Linfedema/genética , Linfedema/terapia , Camundongos Knockout
4.
Biochimie ; 217: 42-53, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37640229

RESUMO

Long non-coding (lnc) RNAs, once considered as junk and useless, are now broadly recognized to have major functions in the cell. LncRNAs are defined as non-coding RNAs of more than 200 nucleotides, regulate all steps of gene expression. Their origin is diverse, they can arise from intronic, intergenic or overlapping region, in sense or antisense direction. LncRNAs are mainly described for their action on transcription, while their action at the translational level is more rarely cited. However, the bibliography in the field is more and more abundant. The present synopsis of lncRNAs involved in the control of translation reveals a wide field of regulation of gene expression, with at least nine distinct molecular mechanisms. Furthermore, it appears that all these lncRNAs are involved in various pathologies including cancer, cardiovascular and neurodegenerative diseases.


Assuntos
Neoplasias , Doenças Neurodegenerativas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Doenças Neurodegenerativas/genética
5.
Elife ; 112022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546462

RESUMO

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paraspeckles , Transativadores/metabolismo , Polirribossomos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Biossíntese de Proteínas
6.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316211

RESUMO

The capacity of ADAMTS3 to cleave pro-VEGFC into active VEGFC able to bind its receptors and to stimulate lymphangiogenesis has been clearly established during embryonic life. However, this function of ADAMTS3 is unlikely to persist in adulthood because of its restricted expression pattern after birth. Because ADAMTS2 and ADAMTS14 are closely related to ADAMTS3 and are mainly expressed in connective tissues where the lymphatic network extends, we hypothesized that they could substitute for ADAMTS3 during adulthood in mammals allowing proteolytic activation of pro-VEGFC. Here, we demonstrated that ADAMTS2 and ADAMTS14 are able to process pro-VEGFC into active VEGFC as efficiently as ADAMTS3. In vivo, adult mice lacking Adamts2 developed skin lymphedema due to a reduction of the density and diameter of lymphatic vessels, leading to a decrease of lymphatic functionality, while genetic ablation of Adamts14 had no impact. In a model of thermal cauterization of cornea, lymphangiogenesis was significantly reduced in Adamts2- and Adamts14-KO mice and further repressed in Adamts2/Adamts14 double-KO mice. In summary, we have demonstrated that ADAMTS2 and ADAMTS14 are as efficient as ADAMTS3 in activation of pro-VEGFC and are involved in the homeostasis of the lymphatic vasculature in adulthood, both in physiological and pathological processes.


Assuntos
Vasos Linfáticos , Linfedema , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animais , Homeostase , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Linfedema/genética , Linfedema/metabolismo , Mamíferos/metabolismo , Camundongos
7.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34200994

RESUMO

In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatics growth has not been fully determined. We showed that lymphangiogenesis developed in tumoral lesions and in surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA stimulates fatty acid ß-oxidation in LECs, leading to increased AT lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.

8.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573286

RESUMO

Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return resulting in swelling of the extremities and accumulation of undrained interstitial fluid/lymph that results in fibrosis and adipose tissue deposition in the limb. Whereas it is clearly established that primary lymphedema is sex-linked with an average ratio of one male for three females, the role of female hormones, in particular estrogens, has been poorly explored. In addition, secondary lymphedema in Western countries affects mainly women who developed the pathology after breast cancer and undergo through hormone therapy up to five years after cancer surgery. Although lymphadenectomy is identified as a trigger factor, the effect of co-morbidities associated to lymphedema remains elusive, in particular, estrogen receptor antagonists or aromatase inhibitors. In addition, the role of sex hormones and gender has been poorly investigated in the etiology of the pathology. Therefore, this review aims to recapitulate the effect of sex hormones on the physiology of the lymphatic system and to investigate whetherhormone therapy could promote a lymphatic dysfunction leading to lymphedema.

9.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008641

RESUMO

Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Trombospondina 1/genética , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas do Citoesqueleto , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Estudos Prospectivos , Proteínas de Ligação a RNA/genética
10.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375307

RESUMO

The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and ß, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.


Assuntos
Artérias/metabolismo , Vasos Linfáticos/metabolismo , Receptores de Estrogênio/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Animais , Artérias/patologia , Biomarcadores , Suscetibilidade a Doenças , Endotélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Vasos Linfáticos/patologia , Fatores Sexuais , Doenças Vasculares/patologia
11.
Int J Biochem Cell Biol ; 114: 105562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31278994

RESUMO

Blood and lymphatic systems work in close collaboration to ensure their respective physiological functions. The lymphatic vessel network is being extensively studied, but has been overlooked as compared to the blood vasculature mainly due to the problematic discrimination of lymphatic vessels from the blood ones. This issue has been fortunately resolved in the past decade leading to the emergence of a huge amount of data in lymphatic biology revealing many shared features with the blood vasculature. However, this likeliness between the two vascular systems may lead to a simplistic view of lymphatics and a direct transcription of what is known for the blood system to the lymphatic one, thereby neglecting the lymphatic specificities. In this context, this review aims to clarify the main differences between the two vascular systems focusing on recently discovered lymphatic features.


Assuntos
Vasos Sanguíneos/fisiologia , Vasos Linfáticos/fisiologia , Gêmeos Dizigóticos , Humanos
12.
Nat Commun ; 9(1): 5178, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518756

RESUMO

The development of new lymphatic vessels occurs in many cancerous and inflammatory diseases through the binding of VEGF-C to its receptors, VEGFR-2 and VEGFR-3. The regulation of VEGFR-2/VEGFR-3 heterodimerisation and its downstream signaling in lymphatic endothelial cells (LECs) remain poorly understood. Here, we identify the endocytic receptor, uPARAP, as a partner of VEGFR-2 and VEGFR-3 that regulates their heterodimerisation. Genetic ablation of uPARAP leads to hyperbranched lymphatic vasculatures in pathological conditions without affecting concomitant angiogenesis. In vitro, uPARAP controls LEC migration in response to VEGF-C but not VEGF-A or VEGF-CCys156Ser. uPARAP restricts VEGFR-2/VEGFR-3 heterodimerisation and subsequent VEGFR-2-mediated phosphorylation and inactivation of Crk-II adaptor. uPARAP promotes VEGFR-3 signaling through the Crk-II/JNK/paxillin/Rac1 pathway. Pharmacological Rac1 inhibition in uPARAP knockout mice restores the wild-type phenotype. In summary, our study identifies a molecular regulator of lymphangiogenesis, and uncovers novel molecular features of VEGFR-2/VEGFR-3 crosstalk and downstream signaling during VEGF-C-driven LEC sprouting in pathological conditions.


Assuntos
Linfangiogênese , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Dimerização , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Receptores de Superfície Celular/genética , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
13.
Arterioscler Thromb Vasc Biol ; 38(6): 1346-1357, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29650694

RESUMO

OBJECTIVE: Estrogens exert beneficial effect on the blood vascular system. However, their role on the lymphatic system has been poorly investigated. We studied the protective effect of the 17ß estradiol-the most potent endogenous estrogen-in lymphedema-a lymphatic dysfunction, which results in a massive fluid and fat accumulation in the limb. APPROACH AND RESULTS: Screening of DNA motifs able to mobilize ERs (estrogen receptors) and quantitative real-time polymerase chain reaction analysis revealed that estradiol promotes transcriptional activation of lymphangiogenesis-related gene expression including VEGF (vascular endothelial growth factor)-D, VEGFR (VEGF receptor)-3, lyve-1, and HASs (hyaluronan synthases). Using an original model of secondary lymphedema, we observed a protective effect of estradiol on lymphedema by reducing dermal backflow-a representative feature of the pathology. Blocking ERα by tamoxifen-the selective estrogen modulator-led to a remodeling of the lymphatic network associated with a strong lymphatic leakage. Moreover, the protection of lymphedema by estradiol treatment was abrogated by the endothelial deletion of the receptor ERα in Tie2-Cre; ERαlox/lox mice, which exhibit dilated lymphatic vessels. This remodeling correlated with a decrease in lymphangiogenic gene expression. In vitro, blocking ERα by tamoxifen in lymphatic endothelial cells decreased cell-cell junctions, inhibited migration and sprouting, and resulted in an inhibition of Erk but not of Akt phosphorylation. CONCLUSIONS: Estradiol protection from developing lymphedema is mediated by an activation of its receptor ERα and is antagonized by tamoxifen. These findings reveal a new facet of the estrogen influence in the management of the lymphatic system and provide more evidence that secondary lymphedema is worsened by hormone therapy.


Assuntos
Linfedema Relacionado a Câncer de Mama/prevenção & controle , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição Hormonal , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linfedema Relacionado a Câncer de Mama/metabolismo , Linfedema Relacionado a Câncer de Mama/patologia , Linfedema Relacionado a Câncer de Mama/fisiopatologia , Modelos Animais de Doenças , Implantes de Medicamento , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovariectomia , Fosforilação , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Tamoxifeno/toxicidade
14.
JCI Insight ; 2(12)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614788

RESUMO

Lymphatic endothelium serves as a barrier to control fluid balance and immune cell trafficking to maintain tissue homeostasis. Long-term alteration of lymphatic vasculature promotes edema and fibrosis, which is an aggravating factor in the onset of cardiovascular diseases such as myocardial infarction. Apelin is a bioactive peptide that plays a central role in angiogenesis and cardiac contractility. Despite an established role of apelin in lymphangiogenesis, little is known about its function in the cardiac lymphatic endothelium. Here, we show that apelin and its receptor APJ were exclusively expressed on newly formed lymphatic vasculature in a pathological model of myocardial infarction. Using an apelin-knockout mouse model, we identified morphological and functional defects in lymphatic vasculature associated with a proinflammatory status. Surprisingly, apelin deficiency increased the expression of lymphangiogenic growth factors VEGF-C and VEGF-D and exacerbated lymphangiogenesis after myocardial infarction. Conversely, the overexpression of apelin in ischemic heart was sufficient to restore a functional lymphatic vasculature and to reduce matrix remodeling and inflammation. In vitro, the expression of apelin prevented the alteration of cellular junctions in lymphatic endothelial cells induced by hypoxia. In addition, we demonstrated that apelin controls the secretion of the lipid mediator sphingosine-1-phosphate in lymphatic endothelial cells by regulating the level of expression of sphingosine kinase 2 and the transporter SPNS2. Taken together, our results show that apelin plays a key role in lymphatic vessel maturation and stability in pathological settings. Thus, apelin may represent a novel candidate to prevent pathological lymphatic remodeling in diseases.

15.
Cancer Res ; 76(15): 4394-405, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280395

RESUMO

The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR.


Assuntos
Linfangiogênese/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Camundongos , Transfecção
16.
World J Exp Med ; 5(1): 11-20, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25699230

RESUMO

Gene therapy appears as a promising strategy to treat incurable diseases. In particular, combined gene therapy has shown improved therapeutic efficiency. Internal ribosome entry sites (IRESs), RNA elements naturally present in the 5' untranslated regions of a few mRNAs, constitute a powerful tool to co-express several genes of interest. IRESs are translational enhancers allowing the translational machinery to start protein synthesis by internal initiation. This feature allowed the design of multi-cistronic vectors expressing several genes from a single mRNA. IRESs exhibit tissue specificity, and drive translation in stress conditions when the global cell translation is blocked, which renders them useful for gene transfer in hypoxic conditions occurring in ischemic diseases and cancer. IRES-based viral and non viral vectors have been used successfully in preclinical and clinical assays of combined gene therapy and resulted in therapeutic benefits for various pathologies including cancers, cardiovascular diseases and degenerative diseases.

17.
Mol Cell Oncol ; 2(4): e1024821, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27308508

RESUMO

Hypoxia is a major condition for the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by growth factors from the vascular endothelial family: the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated at transcriptional and translational levels by hypoxia. Despite strong regulation of DNA transcription induced by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of the mRNA, resulting in downregulation of protein synthesis. Here, we describe how translation initiation of VEGF mRNAs is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implication of the lymphatic vasculature in metastatic dissemination, it seems crucial to understand the hypoxia-induced molecular regulation of lymphangiogenic growth factors to obtain new insights for cancer therapy.

19.
Cell Rep ; 6(1): 155-67, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24388748

RESUMO

Various tumors metastasize via lymph vessels and lymph nodes to distant organs. Even though tumors are hypoxic, the mechanisms of how hypoxia regulates lymphangiogenesis remain poorly characterized. Here, we show that hypoxia reduced vascular endothelial growth factor C (VEGF-C) transcription and cap-dependent translation via the upregulation of hypophosphorylated 4E-binding protein 1 (4E-BP1). However, initiation of VEGF-C translation was induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. IRES-dependent VEGF-C translation was independent of hypoxia-inducible factor 1α (HIF-1α) signaling. Notably, the VEGF-C IRES activity was higher in metastasizing tumor cells in lymph nodes than in primary tumors, most likely because lymph vessels in these lymph nodes were severely hypoxic. Overall, this transcription-independent but translation-dependent upregulation of VEGF-C in hypoxia stimulates lymphangiogenesis in tumors and lymph nodes and may contribute to lymphatic metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Biossíntese de Proteínas , Fator C de Crescimento do Endotélio Vascular/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/diagnóstico , Carcinoma/diagnóstico , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosfoproteínas/metabolismo , Transcrição Gênica , Fator C de Crescimento do Endotélio Vascular/genética
20.
Mol Cell Oncol ; 1(1): e29907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27308316

RESUMO

Hypoxia is known to be a major factor in the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by the vascular endothelial family of growth factors - the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of the lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated by hypoxia at either transcriptional or translational levels. In contrast to strong induction of DNA transcription by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of mRNA and downregulation of protein synthesis. Here, we describe how initiation of translation of VEGF mRNA is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implications of the lymphatic vasculature for metastatic dissemination, it is crucial to understand the molecular regulation of lymphangiogenic growth factors by hypoxia to obtain new insights into cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...